
International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 258
Volume 2, Issue 2, April 2011

Integrating MATLAB with Verification

HDLs for Functional Verification of Image

and Video Processing ASIC

Dhaval Modi
1
, Harsh Sitapara

2
, Rahul Shah

3
, Ekata Mehul

4
, Pinal Engineer

5

Communication System Engineering, L.D. College of Engineering, Ahmedabad1.

Microprocessor Engineering, M.S. University, Baroda2

ASIC Division, EINFOCHIPS Pvt. Ltd., Ahmedabad3

ASIC Division, EINFOCHIPS Pvt. Ltd., Ahmedabad4

S.V.N.I.T., Surat5

dhavalmodi045@yahoo.com1, harsh.sitapara@einfochips.com2, rahulv.shah@einfochips.com3 ,

ekata.mehul@einfochips.com4 , pje@eced.svnit.ac.in5

Abstract - The ultimate Aim of ASIC verification is to

obtain the highest possible level of confidence in the

correctness of a design, attempt to find design errors

and show that the design implements the specification.

Complexity of ASIC is growing exponentially and the

market is pressuring design cycle times to decrease.

Traditional methods of verification have proven to be

insufficient for Digital Image processing applications.

We develop a new verification method based on

SystemVerilog verification with MATLAB to accelerate

verification. The co-simulation is accomplished using

MATLAB and SystemVerilog coupled through the DPI. I

will be using the Image Resize design as case study by

using co-simulation method between SystemVerilog and

MATLAB. Golden reference will be made using

MATLAB In-built functions, while rest of the

Verification blocks are in SystemVerilog. The goal is to

find more bugs from Image resizing Design as compared

to traditional method of Verification, reduce time to

verify video processing ASIC, reduce debugging time,

and reduce coding length.

Key words: Code base, API, DPI, Design cycle time

1. Introduction

Leading chip development teams report that

functional verification has become the biggest

bottleneck, consuming approximately 70% of chip

development time and efforts. For Image and video

processing application, Register transfer level test-

benches have become too complex to manage.

New method has to be discovered to reduce

verification cycle.

Image processing designs easily coded in

MATLAB. Therefore, we believe that verification

could be significantly improved and accelerated by

reusing these golden references models in

MATLAB. In this paper we explore combining

the power of MATLAB, for Image processing

application, signal content generation, spectral

analysis, spectrum and waveform display and

SystemVerilog, for random stimuli generation.

MATLAB and SystemVerilog correlated with each

other through the SystemVerilog DPI interface.

1.1 Verification Architecture using co-

simulation interface

The MATLAB environment is a high-level

technical computing language for algorithm

development, data visualization, data analysis and

numerical computing [1]. MATLAB also included

the Simulink graphical environment used for

multi-domain simulation and model-based design.

Image processing designers take advantage of

Simulink as it offers a good platform for

preliminary algorithmic exploration and

optimization.

First in MATLAB, algorithmic level model is

developed. Second step is to start RTL level

implementation. To verify this research work, we

use SystemVerilog. SystemVerilog has become a

concrete RTL level verification language used by

many industries. One of the good capabilities of

SystemVerilog is to generate random stimuli.

Here golden reference is in MATLAB and

design Under Test is in HDL. Scoreboard

compares the output of golden reference and DUT.

We have to require an efficient transition between

algorithmic level and RTL level design. Thus, we

need a co simulation between the MATLAB

environment and SystemVerilog.

SystemVerilog language doesn‟t provide any

facility to directly call the MATLAB engine. The

SystemVerilog Direct Programming Interface

(DPI) is basically an interface between

SystemVerilog and a foreign programming

language, in particular the C language. It allows

the designer to easily call C functions from

SystemVerilog and SystemVerilog function from

c. We make the same C program to call MATLAB

Engine library.

mailto:havalmodi045@yahoo.com1
mailto:harsh.sitapara@einfochips.com2
mailto:rahulv.shah@einfochips.com3
mailto:ekata.mehul@einfochips.com4

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 259
Volume 2, Issue 2, April 2011

 Once a link has been established between

SystemVerilog and MATLAB, it opens up a wide

range of additional capability to SystemVerilog,

like stimulus generation and data visualization.

The first advantage of our technique is to use the

right tool for the right task. Complex stimulus

generation and signal processing visualization are

carried out with MATLAB while hardware

verification is performed with SystemVerilog

verification standard. The second advantage is to

have a SystemVerilog centric approach allowing

greater flexibility and configurability.

2. Co-simulation between System

Verilog and MATLAB

2.1 Simulation between MATLAB and

C

2.1.1 The MATLAB Engine Library

 To enable C to call MATLAB, we use „engine‟

library available within MATLAB. The MATLAB

engine library contains routines that allow us to

call MATLAB software from our own program.

Engine programs are standalone C/C++ or

FORTRAN programs that communicate with a

separate MATLAB process via pipes. MATLAB

provides a library of functions that allows us to

start and end the MATLAB process, send data to

and from MATLAB, and send commands to be

processed in MATLAB. The MATLAB engine

operates by running in the background as a

separate process from our own program.

 The MATLAB language works with only a

single object type: MATLAB array. These arrays

are manipulated in C using the „mx‟ prefixed

application programming interface (API) routines

included in the MATLAB engine. This API

consists of over 60 routines to create access,

manipulate, and destroy mxArrays.

 The engine library is part of the MATLAB

C/C++ and Fortran API Reference. It contains

routines for controlling the computation engine.

The function names begin with the three-letter

prefix “eng”. MATLAB libraries are not thread-

safe. If you create multithreaded applications,

make sure only one thread accesses the engine

application.

2.1.2 How to communicate with MATLAB

 In this paragraph we show detail about how to

write our application with use of MATLAB engine

library. Write your application in C/C++ using any

of the engine routines to perform computations in

MATLAB. Use the mex script to compile and link

engine programs. mex has a set of switches you

can use to modify the compile and link stages.

Figure 1. Verification Architecture

Figure 2. Interface between SystemVerilog and MATLAB

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 260
Volume 2, Issue 2, April 2011

MATLAB supplies a mex options file to facilitate

building MEX applications. This file contains

compiler-specific flags that correspond to the

general compile, prelink, and link steps required

on your system. If you want to customize the build

process, you can modify this file. The MATLAB

Engine Library is an external library; several steps

have to be taken in order to utilize its capability

within SystemVerilog. The Linker path has to be

modified. Use of the MATLAB Engine Library

also requires modifications to the C compile

command line.

2.1.3 Compiling and Linking MATLAB Engine

Programs

Step: 1 Write your application in C/C++ or

FORTRAN using any of the engine routines to

perform computations in MATLAB.

Step: 2 Build the Application. Use the mex script

to compile and link engine programs.

Step: 3 Use of MEX Options File:- MATLAB

supplies an options file to facilitate building MEX

applications. This file contains compiler-specific

flags that correspond to the general compile,

prelink, and link steps required on your system. If

you want to customize the build process, you can

modify this file.

Step: 4 Building an Engine Application on

LINUX Systems.

Build the executable file using the ANSI compiler

for engine stand alone programs and the options

file engopts.sh:

 optsfile = [matlabroot

'/bin/engopts.sh'];

mex('-f', optsfile, 'engdemo.c');

Verify that the build worked by looking in your

current working folder for the file engdemo:

 dir engdemo

To run the demo in MATLAB, make sure your

current working folder is set to the one in which

you built the executable file, and then type:

 !engdemo

We can change compiler using mex -setup. We

can choose GCC or LCC compiler for our

application. MATLAB provides inbuilt compiler

LCC for C/C++ programs.

2.2 Simulation between SystemVerilog

and C

2.2.1 Introduction about Direct Programming

Interface

 Direct Programming Interface (DPI) is an

interface between SystemVerilog and a foreign

programming language. It consists of two separate

layers: the SystemVerilog layer and a foreign

language layer. Both sides of DPI are fully

isolated. The motivation for this interface is two-

fold. The methodological requirement is that the

interface should allow a heterogeneous system to

be built (a design or a testbench) in which some

components can be written in a language (or more

languages) other than SystemVerilog, hereinafter

called the foreign language. On the other hand,

there is also a practical need for an easy and

Table 1. MATLAB Engine routines to communicate with C

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 261
Volume 2, Issue 2, April 2011

efficient way to connect existing code, usually

written in C or C++, without the knowledge and

the overhead of PLI or VPI.

2.2.2 Import Method

 Methods implemented in C and given import

declarations in SystemVerilog can be called from

SystemVerilog, such methods are referred to as

imported methods. Imported tasks or functions are

similar to SystemVerilog tasks or functions.

Imported tasks or functions can have zero or more

formal input, output, and inout arguments.

Imported tasks always return an int result as part of

the DPI-C disable protocol and, thus, are declared

in foreign code as int functions.

The syntax import method:

import {"DPI-C"}[context|pure][c_identifier =]

[function task] function_ identifier|task

_identifier] ([port_list]);

2.2.3 Export Method

 Methods implemented in SystemVerilog and

specified in export declarations can be called from

C, such methods are referred to as exported

methods. Syntax of export method is same as

import method.

The syntax import method:

export {"DPI-C"}[context|pure][c_identifier =]

[function task][function_ identifier|task

_identifier] ([port_list]);

2.3 Co-simulation between

SystemVerilog and MATLAB

2.3.1 Combining power of

SystemVerilog and MATLAB using

DPI

Here I combine the SystemVerilog DPI and

MATLAB application programming interface. I

use wrapper of C around MATLAB Engine and

use of DPI to communicate with SystemVerilog as

shown in the figure 2.3.

Figure 3. Co-Simulation between SystemVerilog

and MATLAB

 I make code in which I call “engdemo.c” from

SystemVerilog using import DPI method. Here

first SV code is executing and with import DPI

engdemo.c is executing. Output is combination of

both MATLAB and SystemVerilog.

To compile above program I use following

command:

Irun dpic.sv try1.c -

I/opt/matlab2008/extern/include -

L/opt/matlab2008/bin/glnx86 -leng

 When the SystemVerilog compiler while

encountering the C code, It calls GCC compiler to

compile the C code in background. The final

control however remains within the SV compiler.

2.3.3 Flow Chart of co-simulation

 A block diagram of the flow used for the Object

tracking project is shown in the following diagram.

The items existing in the SystemVerilog

environment are in the left column. The middle

two columns show tasks existing in the two

interface C-layers. The far right column shows

tasks existing in the MATLAB workspace.

Figure 4. Flow chart of Co-simulation

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 262
Volume 2, Issue 2, April 2011

3 Image Resizing as a case study

3.1 Overview and Objective

 Image resizing includes image enlargement and

image shrinking. The resizing of image is required

in different applications. Now a days, in every

television sets Picture-in-Picture (PIP) facility is

available. In that a small image of one channel is

shown in the main image of current channel. This

facility uses the fundamentals of image resizing.

The image of other channel is shrunk in smaller

size and shown in current channel screen as a

small window. The image resizing is also used in

all media players available in PC now days.

3.2 Image Resizing Interface

The top level Input and Output pin diagram

for IMR DUT device is shown below. It

shows both host interface side and memory

interface side input/output signals.

Input Interface:-

Imr_host_clk_i

Imr_host_reset_ni

Imr_host_addr_i[15:0]

Imr_host_wr_data_i

Imr_host_wr_en_i

Imr_host_rd_en_i

Output Interface:-

Imr_clk_i

Imr_reset_ni

Imr_wr_hold_ni

Imr_wr_grant_i

Imr_rd_hold_ni

Imr_rd_grant_i

Imr_wr_brust_o

Imr_rd_brust_o

imr_wr_ald_o[31:0]

imr_rd_ald_o[31:0]

3.3 Verification Architecture for Image

Processing Application

 As we know, Image processing Application is

easily made in MATLAB. Due to visualization

capability of MATLAB, it is very easily checked

by human beings. So I can make Scoreboard is in

MATLAB.

 The output of Scoreboard and DUT in checker

is compared & with the help of co-simulation, the

output of MATLAB is transferred in

SystemVerilog. So checker is also in

SystemVerilog. Rest of the blocks is in

SystemVerilog.

Figure 5. Image Resizing Verification

Environment

Table 2. Verification Architecture using Co-

simulation

Sr

No.

OVM

Component
Coding Languages

1 Packet SystemVerilog

2 Sequence SystemVerilog

3 Sequences SystemVerilog

4 Driver SystemVerilog

5 Monitor SystemVerilog

6 Golden reference MATLAB

7 Scoreboard SystemVerilog

8 Coverage SystemVerilog

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 263
Volume 2, Issue 2, April 2011

3.4 Image Resizing OVM Verification

Components:-

 OVM is a complete verification methodology

that codifies the best practices for development of

verification environments. OVM supports the

transaction level modeling with built in class

which reuse easily by extending it.

 OVM uses a SystemVerilog implementation of

standard TLM interfaces for modular

communication between components. The

architecture of OVM is same as shown in

SystemVerilog for my case study of Image

Resizing. But communication is simple and easy.

3.4.1.1 Top level:-

Blocks:-

- Interface

- Design instance

- Clock Declaration and Generation

Description:- It has Description of Interface and

Top module and mapping the interface with DUT

and with testbench environment block.

3.4.2 Class Environment extends

ovm_env:-

 Methods:-

Build()

Connect()

Description:- Environment class is used to

implement verification environments in OVM. It is

extension on ovm_env class. The testbench

simulation needs some systematic flow like

building the components, connection the

components, starting the components etc. ovm_env

base class has methods formalize the simulation

steps.

3.4.3 Class Packet extends

ovm_sequence_item:-

 Members: - rand bit [7:0] sa;

 rand bit [7:0] da;

 rand bit [31:0] rowpixel;

 rand bit [31:0] colpixel;

 rand bit [3:0] hodis;

 rand bit [3:0] verdis;

Description: - One way to model Packet is by

extending ovm_sequence _item.

ovm_sequence_item provides basic functionality

for sequence items and sequences to operate in a

sequence mechanism. Packet class should be able

to generate all possible packet types randomly. To

define copy, compare, record, print and sprint

methods, we will use OVM field macros.

3.4.4 Class Sequencer extends

ovm_sequencer #(Packet):-

 Methods: - end_of_elaboration();

 OVM macro:-

`ovm_sequencer_utils(Sequencer)

Description:- A Sequencer is defined by

extending ovm_sequencer. ovm_sequencer has a

port seq_item_export which is used to connect to

ovm_driver for transaction transfer.

3.4.5 Class sequence extends

ovm_sequence #(Packet):-

 OVM macros: -

`ovm_sequence_utils(sequence , sequencer)

Description:- A sequence is defined by extending

ovm_sequence class. This sequence of transactions

should be defined in budy() method of

ovm_sequence class. OVM has macros and

methods to define the transaction types.

3.4.6 Class Driver extends ovm_driver

#(Packet):-

 Methods: - build();

 end_of_elaboration()

 reset_dut()

 cfg_dut();

 drive(Packet pkt)

 run()

macro:-
macro:-

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 264
Volume 2, Issue 2, April 2011

 OVM macros: - ovm_analysis_port

#(Packet) Drvr2Sb_port

`ovm_component_utils(Driver)

Description:- Driver is defined by extending

ovm_driver. Driver takes the transaction from the

sequencer using seq_item_port. This transaction

will be driven to DUT as per the interface

specification. After driving the transaction to DUT,

it sends the transaction to scoreboard using

ovm_analysis_port.

3.4.7 Class Receiver extends

ovm_component:-

 Methods: - build()

 end_of_elaboration()

 run()

 OVM macros: -

`ovm_component_utils(Receiver)

Description: - Receiver collects the data bytes

from the interface signal. Receiver class is defined

by extending ovm_component class. It will drive

the received transaction to scoreboard using

ovm_analysis_port.

3.4.8 Class Scoreboard extends ovm_scoreboard:-

 OVM macros: -

`ovm_component_utils(Scoreboard)

Description:- Scoreboard compare the output of

golden reference and DUT.

3.5 Advantages compare to

traditional method of Verification

 Here Golden reference is in MATLAB for

Image Resizing ASIC. So we can reduce code

length for the same Image Resizing logic if we can

code in verification HDLs. Another advantage is

reduction in debugging time. We can use the

MATLAB inbuilt function In our Verification

architecture. So we have advantages of both

SystemVerilog and MATLAB. This way we can

reduce ASIC design Cycle for Image processing

ASIC.

4 Conclusions

 In this project a verification environment based

on co-simulation interface between SystemVerilog

and the MATLAB environment has been

presented. The DPI C-layer can be used to

interface to a wide variety of C base libraries and

also the MATLAB Engine Library. The simulation

stimulus could be generated from SystemVerilog;

this would allow more robust image. Use of the

MATLAB graphics capabilities could be more

fully utilized. A more complete testbench can be

build up in a shorter period of time than with

traditional methods. Use of the SystemVerilog and

MATLAB could be extended in a variety of

directions for various applications.

5 Future Works

 The co-simulation between SystemVerilog and

MATLAB has been used in the digital image

processing application project. Instead of creating

time consuming stimuli in SystemVerilog, data

generated from MATLAB environment is used to

drive the testbench. Further using the MATLAB, a

golden reference model is created. This Golden

reference model is used in SystemVerilog

environment to compare behavior of the Design

under verification.

6 References

1. Compiling and Linking MATLAB Engine Programs,

which is available online at

http://www.mathworks.com/help/techdoc/matlab_extern

al/f39903.html

2. MATLAB Application Program Interface Guide

(December 1996).

3. Calling existing C code from MATLAB which is

available online at

http://www.mathworks.com/support/compilers/interface

_r13.html#Call_MATLAB_from_C

4. SystemVerilog Language Reference Manual by

Accellera‟s Extension to Verilog, 2002, 2003.

5. Irun-user guide from cadence, product version 9.2, july

2010.

6. Brian Bailey, “CoVerification: From Tool to

Methodology,” white paper, www.mentor.com, June

2002.

7. Jean-François Boland “USING MATLAB AND

SIMULINK IN A SYSTEMC VERIFICATION

ENVIRONMENT” McGill University, QC, Canada

8. John Stickley, & Wade Stone, “Accelerated Verification

of a MATLAB-Driven Digital FIR Filter RTL Design

Using Veloce and TBX” Mentor Graphics Corporation

9. A Zuloaga, J. L. Martín, U. Bidarte, J. A. Ezquerra

“VHDL test bench for digital image processing systems

using a new image format” Department of Electronics

http://www.mathworks.com/help/techdoc/matlab_external/f39903.html
http://www.mathworks.com/help/techdoc/matlab_external/f39903.html
http://www.mathworks.com/support/compilers/interface_r13.html#Call_MATLAB_from_C
http://www.mathworks.com/support/compilers/interface_r13.html#Call_MATLAB_from_C

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 265
Volume 2, Issue 2, April 2011

and Telecommunications, University of the Basque

Country

10. Janick Bergeron. Writing Test benches using

SystemVerilog. Springer, 2006.

11. William K. Lam. Hardware Design Verification.

Pearson Education, Inc., 2005.

12. Jean Francois Boland, Cosimulation of Matlab with

system C, Mcgill University, Canada, 2004.

13. SystemVerilog for Verification: A Guide to Learning the

Testbench Language Features, 2006 by Chris Spear.

ISBN:0387270361, Publisher:Springer

14. Hardware Verification with System Verilog, 2007 by

Mintz, Mike, Ekendahl, Robert ISBN: 978-0-387-

71738-8, Publisher:Springer

15. Writing Testbenches using SystemVerilog, 2006 by

Bergeron, Janick ISBN: 978-0-387-29221-2.

16. The Art of Verification with SystemVerilog Assertions,

2006 ISBN-13: 978-0-9711994-1-5

