
International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 1
Volume 1, Issue 3, October 2010

Buffer Overrun: Techniques of Attack and Its

Prevention

Mahtab Alam
1
, Prashant Johri

2
, Ritesh Rastogi

3

1: Asst. Prof. & Head of Dept. Computer Science, Aryabhatt College of Engineering and Technology, Baghpat

 Email: alam_mahtab@rediffmail.com

2: Asst. Prof, Dept. of Computer Sc., NIET, Gr. Noida, Email: johri.prashant@gmail.com

3: Asst. Prof, Dept. of Computer Sc., NIET, Gr. Noida, Email: rit_raj@hotmail.com

Abstract: Buffer Overflow attack has been considered as one

of the important security breaches in modern software systems

that has proven difficult to mitigate. This attack allows the

attacker to get the administrative control of the root-privilege

by using the buffer overflow techniques by overwriting on the

address of a returned function, function pointer stored on the

memory and overflow a buffer on the heap. In this paper, we

present the different buffer overflow techniques used by the

exploiters and the methodologies applied to mitigate the buffer

overflow.

Keywords: Buffer Overrun, Heap Smashing, Pointer

Subterfuge, Arc Injection

1. Introduction

The complexity and opportunity of software systems

vulnerabilities are regularly growing with the use of

computer system. Almost every software system is

insecure because of the high growth rate of expertise of

the malicious users. Software system is considered

insecure because of its existing security holes. Buffer

Overflow attacks are the most common security

intrusion attack [3,5] Software security holes related to

buffer overflow accounts the largest share of CERT

advisories. David Wagner from University of California

at Berkeley shows that buffer overflows stand for about

50% of the vulnerabilities reported by CERT [3]. In the

memory allocation table, variables with similar

properties are assigned into the same buffer area, and

their locations are adjacent to each other. A buffer

overflow condition occurs when a program attempts to

read or write outside the bounds of a block of allocated

memory or when a program attempts to put data in a

memory area past a buffer [1]. A buffer overflow may

happen accidentally during the execution of a program

[2]. Buffer overflow is best known for software

security vulnerability, as buffer overflow attack can be

performed in legacy as well as newly developed

application. Buffer overflows are applicable to most

operating systems [2]. In particular the attacks are quite

successful in Windows NT and Windows 2000 system

[4,6,7,8,9,10]

A buffer is a sequential section of computer memory that

holds more than one instances of the same data type. It is

allocated to contain anything from a character string to

an array of integers. An extremely common kind of

buffer is simply an array of character type. Overflow

occurs when data is added to the buffer outside the block

of memory allocated to the buffer. Buffer overflow can

be conducted either by locally or remotely. In a local

attack the attacker already has access to the machine and

acquires the access privileges. On the other hand in

remote attack the attacker deliver commands through

network port, and simultaneously gains the unauthorized

access privilege.

 Bottom of stack Overwrite the original return address with the

 address pointing to the injected code

 Stock Growth

 Continue to feed the attacked program with

 injected string

 Feed the buffer array with the injected code

 through any I/O statement in the attacked

 Top of Stack program.

 Figure -1 Fragment of a Stack

Higher Address

Parameters

Return Address

Pointing to the Injected Codes

Overwritten Area

(Local Variables)

Injected Code

(Local Buffer Array)

Local Variables

Lower Address

mailto:johri.prashant@gmail.com

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 2
Volume 1, Issue 3, October 2010

Buffer overrun is characterized as a stack overrun or heap

overrun depending on what memory gets overrun. Stack

memory is used in C and C++ compilers when local variables

as well as parameters have been used. Heap memory in this

context refers to the dynamically allocated memory uses

new/delete or alloc(), malloc().

Buffer overrun mainly consist the following three steps [2]:

Planting the attack code into the program, copying into the

buffer which overflows it and corrupts adjacent data structures,

and hijacking the program to execute code.

Commonly buffer overflow can be executed by using the stack

smashing: modifying the return address saved on the stack to

point to code the attacker supplies that resides in stack buffer

overrun exploitation as shown in the Figure-1 [11].

2. Buffer Overrun Methods

In recent years, hackers have developed some other approaches

of buffer overrun to exploit software such as Arc Injection,

Pointer Subterfuge and Heap Smashing.

2.1 Arc Injection

Arc Injection sometimes also called as return–into-libc transfer

control of the code that already exists in the memory space.

These types of injection insert a new arc using the installation

of an existing functions such system(), execl() or printf() as into

the program‟s control flow graph and create a shell on the

compromised machine with the permission of the

compromised program. An exploiter uses the arc injection to

invoke a number of functions in a small program that includes

chained functions in sequence with arguments that are supplied

by them.

Example: Following are the main functions used in arc

injection buffer overrun vulnerability [23].

2.1.1 system():

system takes a single argument and executes that argument

with /bin/sh.

 2.1.2 execl():

execl() requires an argument list that is null terminated. This

will end our string early, so there is a need to chain

multiple calls to libc.

2.1.3 printf():

printf is very popular output function used in C language, but

it can be used for exploitation of a program using following

techniques:

o The %n parameter prints how many characters have

been written so far to a location specified by the

argument.

o By using n$ inside a parameter, one can read the value

of the nth argument.

o Combining these, %3$n will write the number of

characters printed so far to the address specified in the

3rd argument.

2.2 Pointer Subterfuge

Pointer Subterfuge is a general expression for exploitation by

using modification of pointer address. This approach used by

an attacker to divert the control flow of a program by using

function pointers (a variable whose value is used as an address)

as an alternative to the saved return address, or modify the

program flow by subverting data pointers [1]. A pointer

subterfuge software exploitation is illustrated as below [24]:

void SomeFunc() {

 // do something

}

typedef void (*FUNC_PTR)(void);

int MalFunc(char *ptString) {

 char buf[32];

 strcpy(buf,szString);

 FUNC_PTR fp = (FUNC_PTR)(&SomeFunc);

 // Other code

 (*fp)();

 return 0;
}

If the malicious user uses the ptString argument in function

MalFunc, then the buffer in the stack buf is ready to

overpower. If the attacker overwrites the function pointer fp,

then this pointer points to another address and exploits code

and the function (*fp)() is invoked. To overcome the problem

caused by pointer subterfuge we have to protect the function

pointer.

2.3 Heap Smashing

Heap Smashing attack overruns a heap buffer to change the

control flow of a program. Such overflow could overwrite

 Heap Memory (Before attack) -----String Copy Operation……-> (During Attack)

Figure-2 Heap smashing attack

 a[0] . . a[20] gap pointer to pointer to

 function 1 function 2

 Attack code Pointer to Pointer tp

 a[0], ..a[20] gap attack code function 2

 point to function1

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 3
Volume 1, Issue 3, October 2010

function pointers stored on the heap to redirect the

control flow. Heap Smashing allows an attacker to

exploit the software by implementing some assumed

variants in dynamically allocated memory. Although

this type of attack is less common in practice but can be

dangerous. Attacker typically is not aware the heap

block‟s location ahead of time and the standard

trampoline approaches are not effective. A typical

example of heap smashing is shown in the Figure-2 [25]

3. Mitigation Techniques

A user may overwrite the input buffer by providing

more data for storage within the buffer than the

programmer has expected. Errors in string manipulation

have long been recognized as a leading source of buffer

overflows in C and C++. A number of mitigation

strategies have been devised. These include mitigation

strategies at requirement and design levels to prevent

buffer overflows from occurring and strategies that are

designed to detect buffer overflows and securely recover

without allowing the failure to be exploited. Rather than

completely relying on a given mitigation strategy, it is

often advantageous to follow a defense-in-depth strategy

of combining multiple strategies. Some approaches to

prevent the buffer overrun in a program are described in

this sequence.

3.1.3 Testing Public Interfaces:

Static analysis techniques should be employing to find

the common coding problems that could expose buffer

overrun. A through interface testing will further

reduce the risk by providing the existence of buffer

overruns and allowing the development team to fix

them as they are found.

By using all the above mentioned techniques in a

layered approach at secure software requirement

analysis phase, it may be possible to reduce the risk of

buffer overruns at some extent

Static analysis techniques should be employing to find

the common coding problems that could expose buffer

overrun. A through interface testing will further reduce

the risk by providing the existence of buffer overruns

and allowing the development team to fix them as they

are found.

By using all the above mentioned techniques in a

layered approach at secure software requirement

analysis phase, it may be possible to reduce the risk of

buffer overruns at some extent

3.1 Layered Approach

Buffer overruns are generally caused by introducing

bugs during application implementation. These bugs can

be mitigated by using following three techniques [12]:

3.1.1 Using Interpreted language:

Developed an application using a interpreted language

that reduces the potential for buffer overruns, such as C#

or Java. The interpreted code eventually calls into

support code that is written into a compiled language

such as C/C++ that could contain buffer overrun.

3.1.2 High Quality Code:

 Buffer overrun to some extent can be mitigated by

ensuring development in an environment that

encourages a high-quality code that requires developers

to participate in code review, running unit test, and

educating them about buffer overruns. Buffer overrun

sneak into the code either through inexperience or

misunderstanding on the part of the developer regarding

how the code works within the large application.

Unfortunately, there are a large number of dangerous

functions that come with C and C++. Any place a

program uses them is a warning signal, because unless

they are used carefully, they become vulnerable [26].

3.2 Traditional Approaches

Traditionally, buffer overruns caused by unsafe

functions in the C library, like strcpy() have been

identified and replace them with safe function like

strncpy(). In this approach the static intrusion prevention

method in which the software bugs can be eliminated by

examining the large number of program carefully is

applied. Removing all security bugs from a program is

considered infeasible [17] which makes the static

prevention incomplete. There are some tools available

that one can use to automate the search for the

vulnerability [13, 14, 15], but still manual auditing of

the code which makes this massive and very expensive

approach [2]. While the value of this systematically

auditing code has been successfully executed, the

approach is not guaranteed to produce buffer-overrun-

free code [16].

3.3 Compiler Approaches

Almost all the buffer overruns problem take place in the

compiler-based programming languages. Range

checking indices are very effective against the buffer

overrun attacks. Buffer overrun attack is not possible in

Java programming language because Java automatically

checks that an array index within the proper bounds. In

C language it is not possible because of the dichotomy

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 4
Volume 1, Issue 3, October 2010

between arrays and pointers [2]. When a compiler

compiles a function strcpy(char* a, char* b) the two

arguments are pointers and it is impossible for a

complier to know the length of the corresponding array,

and complier cannot generate code for range checking

inside the function. Compiler Approach is a kind of

dynamic intrusion prevention techniques which allow

changing the run-time environment or system

functionality making program at some extent less

vulnerable.

C compiler allocates memory space for a local variable

and a function return address in the same stack frame

and adjacent to each other as shown in Figure-1. To

mitigate the possibility of this type of problem some

types of safe compilers are invented and implemented

which are as follows [18}:

3.3.1 StackGuard:

The StackGuard complier was invented and

implemented by Crispin Cowan [18]. The main

objective of the StackGuard is to prevent the dynamic

intrusion prevention by detecting and stopping stack

based buffer overflow and return address. The overhead

for StackGuard can reportedly be as high as 40% [19,

20].

In buffer overrun arrack, the stack is target to fill the

higher address area and then overwrite the other local

variable below the area specified for local variables The

key ideas to mitigate this technique is to place a dummy

value known as canary, in between the return address

and local variables as shown in Figure -3. If the attacker

try to overrun the buffer area, the canary intact the

changing the return address, either by overwriting the

canary with its correct value and thus not changing the

actual one, or by overwriting the return address through

a pointer.

 Figure-3 StackGuard Frame

Although these techniques only stop the buffer overflow

attack that generally attack against the return address,

but attacker still have potential to abuse the pointers

variables, making it point at the return address and

writing a new address to the memory position.

3.3.2 Stack Shield

Stack Shield is a tool for adding protection to programs

from this kind of attacks at compile time without

changing a line of code [21]. Stack Shield is also a

compiler extension mechanism that protects the return

address. Stack shield is more secure protection system

than tool like Stack Guard. In the latest version 0.7 of

stack shield there are two techniques which protect

against writing of the return address and one against

overwriting of function pointers.

(a) Global Ret Stack

 In this mechanism the return address upon calling a

function has been copied to Global Ret Stack array of

32-bit entries. Whenever a malicious user alters the

address of the function, it has no effect since the original

return address is remembered. In this method only

prevention not attack detection is possible in this

technique.

(b) Ret Range Check:

In this mechanism the value of the return address of a

current function is store in the global variable. While

calling the function the return address on the stack is

compared with the value copied in the global variable. If

there is any difference the program execution is halted.

It can detect the attack too.

(c) Protection of Function Pointer:

 Function pointer normally points to the text segment of

the process memory. If the process ensure that no

pointer is allowed to point the other parts of the memory

except text segment, it is impossible for an attacker to

inject a payload (Combination of data and code) into the

process. Protection of function pointer can be possible

by declaring a global variable in the data segment and its

address is used as a boundary value. If the

function points above or below the boundary the process

is terminated.

4. Future Work

The results obtained from our work shows that buffer

overrun can be easily conduct by smashing heap and

stack memory or by overrunning the bytes available in

the memory. Our motive of future work is to reduce

these types of problem by using pointer encryption and

resolve the techniques to mitigate the very small size

even „one- byte‟ of buffer overrun.

5. Conclusion

Buffer overrun is the most important software security

breach. There are several techniques for stopping the

common security buffer overrun. But we have presented

some mitigation techniques related to requirement and

design level of software development life cycle.

Applying the above mentioned approaches one can

mitigate the buffer overrun problem at some extent.

Parameter

Return Address

Canary Value

Local Variable

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 5
Volume 1, Issue 3, October 2010

Reference

[1]. Jonathan Pincus, Brandon Baker, Beyond Stack

 Smashing: Recent Advances in Exploiting Buffer

 Overruns”, IEEE Coputer Society, 2004, pp.20-27.

[2]. Istvan Simon, “A Comparative Analysis of

 Methods of Defense against Buffer Overflow

 Attacks”, January 31, 2001.

[3]. D. wagner, J. S. Foster, E.A. Brewer, and A Aiken,

 “A First Step towards automated detection of

 Buffer Overrun Vulnerabilities. In Proceedings of

 the IEEE Symposium on Security and Privacy,

 pp.-3-17, February 2000.

[4]. DilDog, The TAO of Windows Buffer Overflow,

 http://www.cultdeadcow.com/cDc_files/cDc-

 351/, 1998

[5]. D. Evans and D. Larochelle, “Improving Security

 Using Extensible Lightweight Static Analysis”,

 IEEE Software, 19(1), pp.-42-51, February 2002

[6]. Nishad Herath, (Joey_) Advanced Windows NT

 Security, in Black Hat Asia Conference, 2000.

 URL: http://www.blackhat.com/html/bh-asia-

 00/bh-europe-00-speakers.html#Joey

[7]. Barnaby Jack, (dark spyrit), Win32 Buffer

 Overflows (Location, Exploitation, and

 Prevention), Phrack Magazine 55,(15), URL:

 http://phrack.infonexus.com/search.phtml?view&a

 rticle=p55- 15, 1999.

[8]. Mudge, How to Write Buffer Overflows,

 http://l0pht.com/advisories/buffero.html, 1997

[9]. Ryan Russel, Rain Forest Puppy, Elias Levy,

 Blue Boar, Dan Kaminsky, Oliver

 Friedrichs, Riley Eller, Greg Hoglund, Jeremy

 Rauch, and Georgi Guninski, “Hack Proffing

 Your Network Internet Tradecraft”, Syngress,

 2000.

[10]. Joel Scambray, Stuart McClure, George Kurtz,

 Hacking Exposed, Network Security Secrets &

 Solutions , Second Edition, Osborne/McGrawHill ,

 2001

[11]. Fu-Hau-Hsu, “RAD: A Compile-Time Solution to

 Buffer Overflow Attacks”, Department of

 Computer Science, State University of New York

 at Stony Brook

[12]. Jason Taylor, “Webservices Risk Assessment and

 Recommendation”,Security Innovation

 Commercial Tools Division 1318 S, Babcock

 Street, Melbourne, 2003/2004

[13]. HalVar Flake, “Auditing Binaries for Security

 Vulnerabilities”, in Black Hat Europe Conference,

 2000, URL: http://www.blackhat.com/html/bh-

 europe-00/bh-europe-00-speakers.html

[14]. Nishad Herath (Joey_) “Advanced Windows NT

 Security”, In Black Hat Asia Conference, 2000

[15]. David Wagner, Jeffrey S Foster, Eric A. Brewer,

 and Alexander Aiken, “A First Step Towards

 Automated Detection of Buffer Overrun

 Vulnerabilities”, in Proceedings 7
th

 Network and

 Distributed System Security Symposium 2000

[16]. Chris Evans, Nasty Security Hole in lprm, posted

 in BugTraq, April 18, 1998

[17]. D. Larochelle and D. Evans, “Statically Detecting

 Likely Buffer Overflow Vulnerabilities“, in

 Proceedings of the 2001 USENIX Security

 Symposium, Washington DC, USA, August 2001.

[18]. C. Cowan, C. Pu, D. Maier, J. Walpote, P. Bokke,

 S. Beatie, A. Grier, P. Wagle, Q. Zhang, and H.

 Hinton, “STachGuard: Automatic adaptive

 detection and prevention of buffer-overrun

 attacks”, in Proceedings of the 7
th

 USENIX

 Security Conference, pp-63-78, San Antonio,

 Texas, Jannuary 1998.

[19]. David Llewellyn-Jones, Madjid Merabti, Qi Shi,

 Bob Askwith, “Buffer Overrun Prevention

 Through Component Composition Analysis”,

 Proceedings of the 29
th

 Annual International

 Computer Software and Application Conference

 (COMPSAC‟05), IEEE Transaction 2005.

[20]. C. Cowan, S. Beattie, R. Finnin Day, C. Pu, P.

 Wagle, and E. Walthinsen, “Protecting Systems

 from Stack Smashing Attacks with StackGuard”,

 In Linux Expo., May 1999.

[21]. Stack Shield A "stack smashing" technique

 protection tool for Linux: URL:

 http://www.angelfire.com/sk/stackshield/

[22].http://www.acm.uiuc.edu/sigmil/talks/general_expl

 oitation/arc_injection/arc_injection.html

[23]. John Wilander, Mariam Kamkar, “A

 Comparison of Publicly Available Tools for

 Dynamic Buffer Overflow Prevention”,

 Published at 10
th

Network and Distributed

 System Security Symposium (NDSS), 2003.

[24].http://blogs.msdn.com/michael_howard/archive/20

 06/01/30/520200.aspx

[25]. Christof Petzer, Zhen Xiao, “Detecting Heap

 Smashing Attacks Through Fault Containment

 Wrappers.

[26]. David Wheeler, “Secure Programmer: Countering

 Buffer Overflows”, 27 Jan 2004

Author Biographies

Mahtab Alam: Mr. Mahtab Alam is working as an

Assistant Professor and Head of Dept. of Computer

Science in Aryabhatt College of Engineering and

Technology, Baghpat. He has having 12 years

experience in the field of teaching and6 years in

software industry. He has published Books in

Cryptography and Information Security and currently

pursuing Ph. D. in the field of Information Security. His

areas of interest are Software Engineering, Information

Security, Database Management System and computer

graphics.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 6
Volume 1, Issue 3, October 2010

Prashant Johri : Dr. Prashant Johri is working as as

Assistant Professor, Dept. of Computer Sc. In Noida

Institute of Engineering and Technology, greater Noida,

He has more than 10 years experience in teaching. He

has completed his research work in software reliability

and his areas of interest are Software Engineering,

Design and Analysis of Algorithm, Simulation and

Modeling.

Ritesh Rastogi: Mr. RItesh Rastogi is working

as a Assistant Professor and Head of Department (MCA)

at NIET Gr.Noida for last Eight years. He is having an

experience of around ten years in the field of teaching.

He has published number of Books and is continuously

involved in the field of publication. His main areas of

concern are Software Engineering, Information Security,

Database and Information System.

